Selective cyclopropylcarbinyl rearrangement of tricyclo[5.3.1.0]undecanols induced by pyridinium chlorochromate

Janine Cossy, ${ }^{\text {a,* }}$ Samir BouzBouz, ${ }^{\text {a }}$ Mohamed Laghgar ${ }^{\text {b }}$ and Badia Tabyaoui ${ }^{\text {b }}$
${ }^{\text {a }}$ Laboratoire de Chimie Organique associé au CNRS, ESPCI, 10 rue Vauquelin 75231 Paris Cedex 05, France
${ }^{\mathrm{b}}$ Laboratoire de Chimie Organique, Université Chouaib Doukkali, Faculté des Sciences, 2500 El Jadida, Morocco

Received 12 October 2001; accepted 28 November 2001

Abstract

Tricyclo[5.3.1.0]undecanols were transformed to bicyclo[5.3.1]undecanols in good yield by using pyridinium chlorochromate. © 2002 Elsevier Science Ltd. All rights reserved.

The bicyclo[5.3.1]undecanol ring system is present in naturally occurring taxanes and particularly in anticancer drugs such as taxol. ${ }^{1}$

Here, we report an easy access to the synthesis of the AB ring system of taxol which allows the functionalization of the eight- or six-membered ring. Although the cyclopropylcarbinyl rearrangement of bicyclic systems ${ }^{2-6}$ has been extensively studied, the cyclopropylcarbinyl rearrangements of tricyclic systems are rare. ${ }^{7-10} \mathrm{We}$ investigated cyclopropylcarbinyl rearrangement of tricyclo[5.3.1.0]undecanols of type \mathbf{A} and \mathbf{B} under oxidative conditions, e.g. with pyridinium chlorochromate (PCC) and under acidic conditions (10% aqueous HCl in THF: 1/1).

Tricyclo[5.3.1.0]undecanols $\mathbf{1 a} / \mathbf{1 a}^{\prime}$ and $\mathbf{1 b} \mathbf{e}$ were prepared from hydroazulenol 11 (Schemes 1 and 2) and the tricyclo[5.3.1.0]undecanols $\mathbf{4 a} / \mathbf{4 \mathbf { a } ^ { \prime }}$ and $\mathbf{4 b} / \mathbf{4} \mathbf{b}^{\prime}$ were prepared from hydroazulenone 14 (Scheme 3). After treatment of 1,2-cyclohexanedione 7 with vinylmagnesium bromide (2 equiv., THF, $0^{\circ} \mathrm{C}$), hydroxy ketone $\mathbf{8}$ was obtained (98% yield) and transformed to diol 9 (98% yield) as a mixture of two isomers in a ratio $46 / 54$ by

[^0]addition of vinylmagnesium bromide (2 equiv., THF, $\left.0^{\circ} \mathrm{C}\right) .{ }^{11}$ After thermolysis at $210^{\circ} \mathrm{C}$, diol 9 was rearranged to hydroazulenone $\mathbf{1 0}^{11}$ which was reduced to

A

B
the corresponding alcohol $\mathbf{1 1}$ in 99% yield by using NaBH_{4} (1 equiv.) in the presence of $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ (1 equiv.) in MeOH . The obtained alcohol 11 was then treated with $\mathrm{CH}_{2} \mathrm{I}_{2}$ (6 equiv.) in the presence of $\mathrm{Et}_{2} \mathrm{Zn}$ (3 equiv.) at $-78^{\circ} \mathrm{C}$ and transformed to the cyclopropylcarbinols 1a and $\mathbf{1 a}^{\prime}(82 \%)$ as an inseparable 88/12 mixture. ${ }^{12}$

Compounds $\mathbf{1 a}$ and $\mathbf{1 a}^{\prime}$ could also be obtained by reduction of the tricyclo[5.3.1.0]undecanone 12. A mixture of $\mathbf{1 a}$ and $\mathbf{1 a} \mathbf{a}^{\prime}$ was obtained in a ratio of $21 / 79$ when NaBH_{4} was used for the reduction and a ratio of $43 / 57$ by using DIBAL-H (Scheme 2). For the synthesis of alcohols $\mathbf{1 b} \mathbf{e}$, ketone $\mathbf{1 2}^{13}$ was treated with various Grignard reagents. The addition of vinylmagnesium bromide produced 1b, as an inseparable $74 / 26$ mixture, in 88% yield, whereas isopropylmagnesium bromide led to 1c as a single isomer in 68% yield and while allylmagnesium bromide afforded alcohol 1d as a single isomer in 86% yield. Oxidative cleavage of the allyl group present in 1d, by using O_{3} in 2.5 M methanolic $\mathrm{NaOH},{ }^{14}$ afforded the methyl ester $\mathbf{1 e}$ (Scheme 2).

Scheme 1. Synthesis of $\mathbf{1 a}$ and $\mathbf{1 a}^{\prime}$.

Scheme 2. Synthesis of tricyclo[5.3.1.0]undecanols $\mathbf{1 a} / \mathbf{1 a}{ }^{\prime}$ and $\mathbf{1 b} \mathbf{e}$.

Cyclopropylcarbinols $\mathbf{4 a}$ and $\mathbf{4 a}^{\prime}$ were synthesized from cycloheptanone 13 which was transformed to hydroazulenone $\mathbf{1 4}^{15}$ and subsequently converted to $\mathbf{6}$ by treatment with trimethysulfoxonium iodide. ${ }^{16}$ Reduction of 6 with NaBH_{4} in MeOH at room temperature led to the separable alcohols $\mathbf{4 a}$ and $\mathbf{4 a}^{\prime}$ as a $96 / 4$ mixture in 93% yield. Reaction of 6 with methylmagnesium bromide afforded cyclopropylcarbinols $\mathbf{4 b}$ and $\mathbf{4 b}$ ' (ratio: 98/2, yield: 97%). Compound $\mathbf{4 a}$ was purified by chromatography and characterized by ${ }^{1} \mathrm{H}$ NMR-NOE experiments ${ }^{9 b, 17}$ (Scheme 3).

The rearrangement of tricyclo[5.3.1.0]undecanols 1a/ $\mathbf{1 a}^{\prime}, \mathbf{1 b} \mathbf{e}, 4 \mathbf{a}-\mathbf{b}$ were carried out with PCC^{18} or 10% aqueous HCl in THF (1/1). ${ }^{19}$ Cyclopropylcarbinols 1a/ $\mathbf{1 a}^{\prime}$ afforded two compounds with PCC (3 equiv., $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt): the rearranged product $\mathbf{2 a}{ }^{20,21}$ and ketone 3. These two products were easily separated by flash chromatography. It is worth noting that the ratio of $\mathbf{2 a}$ and $\mathbf{3}$ depends on the ratio of $\mathbf{1 a}$ and $\mathbf{1 a}^{\prime}$. Under acidic conditions, 2a was the only isolated product (87% yield) (Table 1). In the case of compounds $\mathbf{1 b} \mathbf{e}$, regardless of the conditions (PCC or HCl), the only products formed

Scheme 3. Synthesis of $\mathbf{4 a} / \mathbf{4} \mathbf{a}^{\prime}$ and $\mathbf{4 b} / \mathbf{4 b}^{\prime}$. (i) Trimethylsulfoxonium iodide, $\mathrm{NaH}, \mathrm{DMSO}, 0^{\circ} \mathrm{C}$; (ii) $\mathrm{NaBH}_{4}, \mathrm{MeOH} / \mathrm{THF}, 0^{\circ} \mathrm{C}$; (iii) $\mathrm{CH}_{3} \mathrm{MgBr}$, ether, $0^{\circ} \mathrm{C}$.

Table 1. Rearrangement of $\mathbf{1 a} / \mathbf{1 a}^{\prime}, \mathbf{1 b} \mathbf{e}$ by using PCC or $10 \% \mathrm{HCl}$ in THF

Starting material	PCC			10\% HCl		
	$T\left({ }^{\circ} \mathrm{C}\right), t(\mathrm{~h})$	2 (Yield (\%))	3 (Yield (\%))	$T\left({ }^{\circ} \mathrm{C}\right), t(\mathrm{~h})$	2 (Yield (\%))	3 (Yield (\%))
$\mathbf{1 a} / \mathbf{1 \mathbf { a } ^ { \prime }}=88 / 12$	rt, 0.5	48	40			
$\mathbf{1 a} / \mathbf{1 \mathbf { a } ^ { \prime }}=55 / 45$	rt, 0.5	52	43	rt, 1	87	0
$\mathbf{1 a / 1 a} \mathbf{a}^{\prime}=21 / 79$	rt, 0.5	27	63			
1b	rt, 20	73	0	rt, 0.7	82	0
1c	rt, 0.5	85	0	rt, 0.3	94	0
1d	rt, 0.3	95	0	rt, 0.3	92	0
1 e	rt, 24	72	0	rt, 0.5	78	0

were the rearranged products 2 in yields up to 70% (Table 1). The reactivity of alcohols $\mathbf{4 a}$ and $\mathbf{4 b}$ were also examined. When 4a was treated with PCC (3 equiv., $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt), ketone $\mathbf{6}$ was isolated in 80% yield. On the contrary, the rearranged product $5 \mathbf{5}$ was obtained in 92% yield when $4 \mathbf{a}$ was treated under acidic conditions. In the case of $\mathbf{4 b}, \mathrm{PCC}$ as well as acidic conditions led to the corresponding rearranged compound $\mathbf{5 b}$ in up to 90% yield (Table 2).

The conversion of cyclopropylcarbinols to β, γ-unsaturated alcohols has been previously explained by the formation of intermediate cyclopropylcarbinyl cations under acidic conditions. ${ }^{22}$ In the case of the secondary cyclopropylcarbinol $\mathbf{4 a}$, it seems that the weak acidity of PCC is not sufficient to induce the formation of a cyclopropylcarbinyl cation and, the oxidation process takes place to produce ketone $\mathbf{6}$. As in compound $\mathbf{4 b}$, the trans periplanar arrangement of the $\mathrm{C} 1-\mathrm{C} 7$ and the $\mathrm{C} 8-\mathrm{OCr}$ bonds is not fulfilled, the rearranged product $\mathbf{5 b}$ could not be the result of a concerted fragmentation process in which the initially formed chromic ester II will be the leaving group that will promote the cleavage
of the $\mathrm{C} 1-\mathrm{C} 7$ bond of the cyclopropyl ring. As a tertiary carbocation is formed more easily than a secondary carbocation, the weak acidity of PCC can induce the formation of $\mathbf{5 b}$ via intermediate \mathbf{I} (ionic mechanism) (Scheme 4).

Contrary to the secondary cyclopropylcarbinol $4 \mathbf{4}(\mathrm{R}=$ H), which was transformed only to the oxidized product $\mathbf{6}$, the treatment of $\mathbf{1 a} / \mathbf{1 a}^{\prime}$ with PCC led to a mixture of the rearranged compound $\mathbf{2 a}$ and ketone $\mathbf{3}$. The ratio of these products depended on the ratio of $\mathbf{1 a} / \mathbf{1} \mathbf{a}^{\prime}$. A $55 / 45$ mixture of $\mathbf{1 a} / \mathbf{1 \mathbf { a } ^ { \prime }}$ produced $\mathbf{2 a}$ and $\mathbf{3}$ in a ratio of $52 / 43$, whereas a $21 / 79$ mixture of $\mathbf{1 a} / \mathbf{1 a ^ { \prime }}$ led to $\mathbf{2 a} / \mathbf{3}$ in a ratio of $27 / 63$ and a $88 / 12$ mixture of $\mathbf{1 a} / \mathbf{1 \mathbf { a } ^ { \prime }}$ led to a mixture of $\mathbf{2 a} / \mathbf{3}$ in a ratio of $48 / 40$. In alcohol 1a, where the trans periplanar arrangement of the $\mathrm{C} 1-\mathrm{C} 7$ and the $\mathrm{C} 8-\mathrm{OCr}$ bonds is fullfilled (cf. intermediate III), oxidation can compete with rearrangement and the rearranged product $\mathbf{2 a}$ can be formed as well as ketone 3. The rearrangement of 1 a by a stepwise mechanism (ionic) cannot be excluded. In the case of compound $\mathbf{1 a}^{\prime}$, as the $\mathrm{C} 1-\mathrm{C} 7$ and the $\mathrm{C} 8-\mathrm{OCr}$ bonds are not trans periplanar (cf. intermediate IV), this com-

Table 2. Rearrangement of alcohols $\mathbf{4 a}$ and $\mathbf{4 b}$ by using PCC or $10 \% \mathrm{HCl}$ in THF

Starting material	PCC			$10 \% \mathrm{HCl}$		
	$T\left({ }^{\circ} \mathrm{C}\right), t(\mathrm{~h})$	5 (Yield (\%))	6 (Yield (\%))	$T\left({ }^{\circ} \mathrm{C}\right), t(\mathrm{~h})$	5 (Yield (\%))	6 (Yield (\%))
4a	rt, 0.8	0	80	60, 10	92	0
4b	rt, 0.8	83	0	rt, 3	90	0

Scheme 4. Mechanism of the rearrangement induced by PCC and Newman projections according to the C7-C8 bond of the tricyclo[5.3.1.0]undecane system.
pound can be oxidized or rearranged by a stepwise ionic mechanism (Scheme 4).

We have demonstrated that tricyclo[5.3.1.0]undecanols can be transformed to bicyclo[5.3.1.0]undecanols in good yields under mild conditions by using PCC. The use of other PCC-induced rearrangements in the synthesis of natural products is under investigation.

References

1. (a) Guénard, D.; Guéritte-Voegelin, F.; Potier, P. Acc. Chem. Res. 1993, 26, 160; (b) Nicolaou, K. C.; Dai, W.-M.; Guy, R. K. Angew. Chem., Int. Ed. Engl. 1994, 33, 15.
2. Friedrich, E. C.; Saleh, M. A.; Winstein, S. J. Org. Chem. 1973, 38, 860.
3. Friedrich, E. C.; Saleh, M. A. J. Am. Chem. Soc. 1973, 94, 2617.
4. Friedrich, E. C.; Coooper, J. D. Tetrahedron Lett. 1976, 17, 4397.
5. Friedrich, E. C.; Coooper, J. D. J. Org. Chem. 1979, 24, 4224.
6. Olah, G. A.; Prakash, G. K. S.; Rawdah, T. N. J. Org. Chem. 1980, 45, 965.
7. Gassman, P. G.; Steppel, R. N.; Armour, E. A. Tetrahedron Lett. 1973, 14, 3287.
8. Kumar, P.; Rao, A. T.; Pandey, B. Tetrahedron Lett. 1995, 36, 3397.
9. (a) Thielemann, W. Master Thesis, Westfälische Wil-helms-Universität Münster, 1994; (b) Thielemann, W.; Schäfer, H. J.; Kotila, S. Tetrahedron 1995, 51, 12027.
10. Cossy, J.; Bouzbouz, S. Tetrahedron Lett. 1997, 38, 1931.
11. Leriverend, P.; Conia, J. M. Bull. Soc. Chim. Fr. 1970, 1040.
12. The ratio was determined by $\mathrm{GC} / \mathrm{MS}$ at 70 eV by using a Hewlett Packard 5971 instrument.
13. Ketone $\mathbf{1 2}$ was obtained by oxidation of $\mathbf{1 a} / \mathbf{1 \mathbf { a } ^ { \prime }}$ by using PDC (3 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.
14. Marshall, J. A.; Garofalo, A. W. J. Org. Chem. 1993, 58, 3675.
15. (a) Kovats, E.; Fürst, A.; Günthard, H. H. Helv. Chim. Acta 1954, 34, 534; (b) Tobe, Y.; Fukuda, Y.; Kakiuchi, K.; Odaira, Y. J. Org. Chem. 1984, 49, 2012.
16. Corey, E. J.; Chaykovsky, M. J. Am. Chem. Soc. 1965, 87, 1353.
17. Compound 4a; ${ }^{9 b}$ IR (film): $3580 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz}): \delta 0.10(\mathrm{~d}, 1 \mathrm{H}, J=4.8 \mathrm{~Hz}) ; 0.58(\mathrm{~d}, 1 \mathrm{H}, J=4.8$ $\mathrm{Hz}) ; 0.80-2.00(\mathrm{~m}, 15 \mathrm{H}), 4.08(\mathrm{t}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 16.7(\mathrm{t}), 26.5(\mathrm{t}), 26.6(\mathrm{t}), 29.7$ $(\mathrm{t}), 29.9(\mathrm{t}), 31.4(\mathrm{t}), 32.0(\mathrm{t}), 32.6(\mathrm{t}), 36.8(\mathrm{~s}), 77.0(\mathrm{~d}) ;$ MS (EI, 70 eV) m/z: 166 (28), 151 (24), 148 (12), 137 (59), 123 (100), 109 (51), 91 (47), 81 (55), 55 (34).
18. To a solution of tricyclo[5.3.1.0]undecanols $(0.2 \mathrm{~g}, 1.2$ $\mathrm{mmol})$, dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$, was added PCC $(0.77 \mathrm{~g}, 3.6 \mathrm{mmol})$ at $25^{\circ} \mathrm{C}$. After completion of the reaction (indicated by TLC and GC/MS) the reaction mixture was diluted with ether and filtered on Celite. The organic phase was concentrated in vacuo and the residue was purified by silica gel chromatography (hexanes/ EtOAc: 9/1).
19. To a solution of tricyclo[5.3.1.0]undecanols $(0.2 \mathrm{~g}, 1.2$ $\mathrm{mmol})$, dissolved in THF (2 mL), was added $\mathrm{HCl}(10 \%$ in
$\left.\mathrm{H}_{2} \mathrm{O}\right)(2 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$. After completion of the reaction (indicated by TLC and GC/MS), the reaction mixture was extracted with ether. The organic phase was washed with $\mathrm{H}_{2} \mathrm{O}$ and then with brine, dried over MgSO_{4}, and concentrated in vacuo. The residue was purified by silica gel chromatography (hexanes/EtOAc: 9/1).
20. Compound 2a; IR (film): $3340 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz}): \delta 1.09-3.10(\mathrm{~m}, 16 \mathrm{H}), 5.50(\mathrm{~d}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 23.9(\mathrm{t}), 26.2(\mathrm{t}), 27.5(\mathrm{t})$, $32.2(\mathrm{t}), 34.9(\mathrm{t}), 37.0(\mathrm{t}), 40.1(\mathrm{t}), 40.3(\mathrm{t}), 77.8(\mathrm{~s}), 122.4$ (d), 139.9 (s); MS (EI, 70 eV) m/z: 166 (5), 151 (35), 148 (91), 133 (40), 123 (87), 106 (61), 97 (100).
21. The relative stereochemistry of the tertiary alcohol in 2a was proved by hydrogenation to the saturated alcohol described in the literature: Molander, G. A.; McKie, J. A. J. Org. Chem. 1991, 56, 4112.
22. (a) Sarel, S.; Yovell, J.; Sarel-Imber, M. Angew. Chem., Int. Ed. Engl. 1968, 577; (b) Vogel, P. Carbocation Chemistry; Elsevier: Amsterdam, 1985.

[^0]: * Corresponding author.

